PII S0016-7037(96)00267-0 # Sedimentation rate as determined by ²²⁶Ra activity in marine barite A. PAYTAN, W. S. MOORE, and M. KASTNER ¹Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0212, USA ²Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, USA (Received July 23, 1996; accepted in revised form July 24, 1996) **Abstract**—In recently formed marine barite (BaSO₄) separated from two equatorial Pacific cores 226 Ra activity exceeds that of its parent 230 Th by at least an order of magnitude, indicating radium uptake during barite precipitation. The decay of 226 Ra with depth, in these samples, is exponential implying that no radium exchange with porewaters occurs after burial. Thus, barite behaves as a closed system below the sediment mixed layer. The absence of 226 Ra_{exs} activity in barite samples older than ~ 8000 years, the lack of any detectable 228 Th, 228 Ra, and 224 Ra in any of the barite samples analyzed, and the unaltered crystal size and habit with depth in the sediment, further support this conclusion. Hence, assuming that oceanic Ra/Ba ratio has not changed throughout the Holocene, the decay of unsupported 226 Ra permits dating of marine barite and estimating sedimentation rates. Holocene sedimentation rates calculated using the decay of 226 Ra_{exs} in barite are consistent with 14 C and δ 18 O derived sedimentation rates of 2–3 cm/kyr for the same cores. The method could be extendible to carbonate-poor Holocene sediments. ### 1. INTRODUCTION ### 1.1. General Background Barite in marine sediments records a variety of important oceanic processes and characteristics, i.e., paleoproductivity (Dymond et al., 1992; Schmitz, 1987; Shimmield et al., 1988), organic carbon export from the euphotic zone (Bishop, 1988; Dehairs et al., 1990, 1991), and seawater strontium isotope composition (Paytan et al., 1993). Little information is available on the fate of barite after burial, especially during early diagenesis. To evaluate its potential for short- and long-range geochemical paleoceanographic studies, it is important to determine the diagenetic behavior of barite. Already in the seventies it was recognized that the U-series radionuclides systematics in marine barite and associated sediments could enhance our understanding of the formation and early diagenesis of this phase (Church and Bernat, 1972; Borole and Somayajulu, 1977) and possibly provide the geochronology of the associated sediments (Lal and Somayajulu, 1975; Koide et al., 1976). Most seawater profiles are characterized by excess ²²⁶Ra, $(t_{1/2} = 1600 \text{ y})$ over ²³⁰Th, due to the greater particle reactivity of thorium and the diffusion of radium into the water column from porewaters (Ivanovich and Harmon, 1992). In most marine sediments ²³⁰Th activity decreases with depth while ²²⁶Ra activity increases towards equilibrium with ²³⁰Th (Cochran, 1979; Kadko, 1980; Piggot and Urry, 1941), resulting in a subsurface maximum of 226Ra. The associated porewaters should have a similar ²²⁶Ra activity profile due to desorption from mineral surfaces and dissolution of sedimentary components. Thus, if barite crystals exchange radium with porewaters, or grow below the bioturbated zone in the sediment, the ²²⁶Ra/Ba ratio of sedimentary barite would also exhibit such a trend. Moreover, if barite continuously acquires barium and radium from porewaters, barite samples older than ~8,000 years would have excess ²²⁶Ra activities, from porewaters that contain 226Ra produced from ²³⁰Th in the sediments. Exponential decay of ²²⁶Ra in barite and no detection of $^{226}Ra_{exs}$ activity in samples older than $\sim \! 8000$ years, however, would suggest that barite behaves as a closed system with respect to radium. ### 1.2. Previous Studies Earlier studies of radium, lead, thorium, and uranium in marine barite samples implied rapid exchange and remobilization of these elements (Church and Bernat, 1972; Borole and Somayajulu, 1977). Church and Bernat (1972) measured thorium and uranium concentrations in barite samples, reported ²²⁸Th/²³²Th activity ratios (AR) of 2–21 (with most values in the range of 3-5) for barite from near core tops, and proposed that ²²⁸Ra in the barite was in rapid exchange equilibrium with porewaters. These data suggest that radium, and by implication also barium, reside in the barite for only about one year before returning to the porewaters. Providing a mechanism for such rapid exchange was not forwarded and is problematic. Church and Bernat (1972) also reported ²³⁰Th/²³²Th AR in barite which are ten times lower than the AR of the bulk sediment from which the barite was extracted. To explain this surprising result it was assumed the bulk sediment scavenged thorium from surface seawater where they postulate the ²³⁰Th/²³²Th AR is high, while the barite acquired thorium from deep or porewater where, they postulated, the ratio is low. We now know that the surface Pacific Ocean ²³⁰Th/²³²Th AR is low and the deep water ratio is high, just the reverse of what was postulated. Accordingly, their data imply that barite must preserve a surface ocean ²³⁰Th/²³²Th AR and is not in rapid exchange equilibrium with porewaters. Borole and Somayajulu (1977) measured ²²⁶Ra and ²¹⁰Pb in barite samples separated from an eastern equatorial Pacific core with sedimentation rates of 3–5 cm/kyr from subsurface depth of 42–785 cm. Thus, all of the samples they analyzed were older than 8,000 years and should not contain any residual excess ²²⁶Ra. They did, however, measure excess ²²⁶Ra in the barite samples and observed no decrease TABLE 1. ²²⁶Ra and ²³⁰Th activities in (a) marine barite from core MC69, 0.67°N, 139.43°W; 4307 m water depth; and core MC82, 2.03°N, 140.08°W; 4413 m water depth, collected in November, 1992. (b) Barite samples older than 8,000 years. (c) Bulk sediments from cores MC69 and MC82. (a) | Depth
(cm) | ²²⁶ Ra in barite
(dpm/g) ±5% | ²³⁸ Th in barite (dpm/g)
<u>+</u> 10% | ²³⁶ Th/ ²³² Th
(dpm/dpm) | 226Ra _{exs} in barite
(dpm/g) | * ¹⁴ C age
(years) | |---|--|---|---|---|----------------------------------| | Core | 0.67°N 139.43°W, | 4307 m water depth | | | | | 0.25 | 1405 | 117 | 61 | 1386 | | | 0.75 | 1007 | | | 1 | 1,000 | | 1.5 | 1096 | | |] | | | 2.5 | 1004 | | | 1 | 1,250 | | 3.5 | 1304 | 371 | 179 | 1126 | 1,500 | | 4.5 | 1087 | i l | | | | | 5.5 | 968 | 169 | 105 | 873 | 2,500 | | 6.5 | 1181 | | | | | | 7.5 | 1106 | 234 | 171 | 963 | 2,800 | | 8.5 | 1041 | J | | l i | | | 9.5 | 1017 | 270 | 88 | 828 | 3,275 | | 11 | 893 | | | 1 | 3,750 | | 13 | 640 | 117 | 70 | 556 | 4,500 | | 15 | 604 | 264 | 105 | 378 | 5,250 | | 17 | 472 | 120 | 189 | 365 | 6,400 | | 19 | 382 | J | | } | | | 21 | 295 | 175 | 161 | 130 | 7,600 | | 23 | 236 | 133 | 70 | 108 | 9,000 | | 25 | 162 | | | | | | 27 | 113 | 198 | 90 | 0 | 10,500 | | Core | 2.03°N 140.08°W, | 4413 m water depth | | | | | 0.25 | 1290 | | | | | | 0.75 | 930 | 17 | 21 | 915 | 2,000 | | 1.5 | 1092 | | | | 3,700 | | | | | | | | | 2.5 | 929 | | | | | | 3.5 | 881 | 152 | 169 | 749 | 4,500 | | 3.5
4.5 | 881
768 | 152 | 169 | 749 | · | | 3.5
4.5
5.5 | 881
768
728 | | | | 4,500
5,000 | | 3.5
4.5
5.5
6.5 | 881
768
728
693 | 414 | 114 | 315 | 5,000 | | 3.5
4.5
5.5
6.5
7.5 | 881
768
728
693
718 | 414
479 | 114
122 | 315
277 | · | | 3.5
4.5
5.5
6.5
7.5
8.5 | 881
768
728
693
718
596 | 414
479
389 | 114
122
75 | 315
277
237 | 5,000 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5 | 881
768
728
693
718
596
436 | 414
479
389
240 | 114
122
75
89 | 315
277
237
220 | 5,000 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5 | 881
768
728
693
718
596
436
366 | 414
479
389
240
177 | 114
122
75
89
92 | 315
277
237
220
162 | 5,000
5,700 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
11 | 881
768
728
693
718
596
436
366
280 | 414
479
389
240
177
192 | 114
122
75
89
92
71 | 315
277
237
220
162
93 | 5,000 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
11 | 881
768
728
693
718
596
436
366
280
207 | 414
479
389
240
177
192
130 | 114
122
75
89
92
71 | 315
277
237
220
162
93
78 | 5,000
5,700
7,500 | | 3.5
4.5
5.5
6.5
7.5
8.5
9.5
11 | 881
768
728
693
718
596
436
366
280 | 414
479
389
240
177
192 | 114
122
75
89
92
71 | 315
277
237
220
162
93 | 5,000
5,700 | (b) | Sample | ** ²²⁶ Ra in barite
(dpm/g) | ²³⁶ Th in barite
(dpm/g) | ²³⁰ Th/ ²³² Th
(dpm/dpm) | ****Age
(kyr) | |-----------|---|--|---|------------------| | PC72- 37 | 67 | 120 | 89 | 12 | | PC72- 47 | 31 | 106 | 40 | 15 | | PC72- 157 | 233 | 2306 | 139 | 67 | | PC72- 315 | 33 | 56 | 168 | 163 | | PC72- 739 | 33 | 37 | 75 | 419 | | 575B 13-2 | *** nd | - | 1 | 16300 | | 574C 11-3 | nd | - 1 | | 20400 | | 574C 20-2 | nd | - 1 | | 27000 | in 226 Ra activity with depth in the core. Therefore, they concluded that the barite must be continuously growing in the sediment column. The Ra/Ba ratio in the porewaters and bottom waters in that area is, however, about a factor of 10 higher than the ratio in the barite and the distribution coefficient for radium in barite is close to 1 (Moore and Dymond, 1991); thus, the growth could not have been taking place in equilibrium with the porewater. Furthermore, no increase in barite crystal size nor change in crystal habit down-core were observed. They also recorded 210 Pb/ 226 Ra AR of only 0.04–0.15; therefore, 222 Rn escape from the barite crystals was speculated. Given the size of the crystals $(1-5 \ \mu m)$, loss of 85–96% of the ²²²Rn is puzzling; when precipitated in the laboratory, barite does not emanate much ²²²Rn. The new radium and thorium data from equatorial Pacific marine barite samples, presented below, differ from the above and provide insights on marine barite formation and preservation and on the use of ²²⁶Ra decay in this phase as a dating tool of young marine sediments. # 2. EXPERIMENTAL METHODS Marine barite microcrystals from the upper 25 cm of two box cores from the central equatorial Pacific and from several older sediments were separated by sequential leaching with acetic acid, TABLE 1. (Continued). (c) | Depth | 224Ra | **** 230Them | 210 Pb _{exs} | * ¹⁴ C age | |---|---|-------------------|-----------------------|-----------------------| | (cm) | (dpm/g) <u>+</u> 5% | (dpm/g) ± 2% | (dpm/g) <u>+</u> 5% | (years) | | Core MC69, | 0.67°N 139.43°W, | 4307 m water | | | | 0.25 | 11.27 | | 24.44 | 400 | | 0.75 | 10.21 | 1 ,, ,, | 17.22 | 1,000 | | 1.5 | 10.67
11.10 | 18.63 | 10.97
10.58 | 1 250 | | 3.5 | 11.10 | 18.01 | 5.91 | 1,250
1,500 | | 4.5 | 10.87 | 18.01 | 3.20 | 1,500 | | 5.5 | 11.49 | 17.89 | 0.75 | 2,500 | | 6.5 | 12.27 | 17.69 | 0.75 | 2,500 | | 7.5 | 11.26 | | | 2,800 | | 8.5 | 11.74 | | | 2,800 | | 9.5 | 10.82 | 15.39 | | 3 275 | | | 10.82 | 15.39 | | 3,275 | | 11 | | 12.12 | | 3,750 | | 13 | 10.59 | 13.19 | | 4,500 | | 15 | 9.60 | 12.16 | | 5,250 | | 17 | 9.95 | 1 | Į. | 6,400 | | 19 | 9.44 | 1 2 12 | | 7 | | 21 | 8.68 | 9.40 | | 7,600 | | 23 | 8.88 | 1 | | 9,000 | | 25 | 9.80 | 9.54 | | | | 27 | | | | 10,500 | | Core MC82, | 2.03°N 140.08°W, | 4413m water depth | | | | 0.25 | 10.11 | 1 | | | | 0.75 | 10.57 | 1 | 27.29 | 2,000 | | 1.5 | 8.68 | 27.24 | 13.79 | 3,700 | | 2.5 | 8.37 | 1 | 4.07 | | | 3.5 | 11.18 | 25.99 | 1 | 4,500 | | 4.5 | 10.92 | 26.05 | | | | 5.5 | 11.03 | 1 | | 5,000 | | 6.5 | 11.34 | | | | | | | | | | | 7.5 | 10.65 | 23.16 | | 5,700 | | 7.5
8.5 | 10.65
10.25 | 23.16 | | 5,700 | | 7.5
8.5
9.5 | 10.65
10.25
9.91 | | | 5,700 | | 7.5
8.5
9.5 | 10.65
10.25
9.91
10.33 | 23.16 | | · | | 7.5
8.5
9.5
11
13 | 10.65
10.25
9.91
10.33
9.76 | | | 5,700
7,500 | | 7.5
8.5
9.5
11
13 | 10.65
10.25
9.91
10.33
9.76
9.85 | 16.39 | | 7,500 | | 7.5
8.5
9.5
11
13
15 | 10.65
10.25
9.91
10.33
9.76
9.85
8.85 | | | 7,500
10,500 | | 7.5
8.5
9.5
11
13
15
17 | 10.65
10.25
9.91
10.33
9.76
9.85
8.85
8.92 | 16.39 | | 7,500 | | 7.5
8.5
9.5
11
13
15
17
19 | 10.65
10.25
9.91
10.33
9.76
9.85
8.85
8.92
8.90 | 16.39 | | 7,500
10,500 | | 7.5
8.5
9.5
11
13
15
17 | 10.65
10.25
9.91
10.33
9.76
9.85
8.85
8.92 | 16.39 | | 7,500
10,500 | | 7.5
8.5
9.5
11
13
15
17
19 | 10.65
10.25
9.91
10.33
9.76
9.85
8.85
8.92
8.90 | 16.39 | | 7,500
10,500 | ^{*} Ages from DeMaster and Pope (1994). sodium hypochlorite, hydroxylamine hydrochloride, HNO₃-HF mixture, and ashing, described in Paytan et al. (1993); all of the sediments are oxic. This procedure completely removes Fe-Mn oxyhydroxide coatings and preferentially removes radium relative to thorium from the barite surfaces, but does not affect the radium in the barite structure. The 226 Ra activities of these barites and 226 Ra and 210 Pb activities of the bulk sediment were measured by γ -ray spectrometry, using an intrinsic germanium detector with a 1 cm diameter well (Moore, 1984). The activities of other gamma emitters, specifically, 228 Th, 228 Ra, and 224 Ra, were monitored; no activities of these nuclides were detected above background level for any of the barite samples measured. The 230 Th, 232 Th, and uranium isotopes activities in barite samples were measured by dissolution in the presence of a 232 U- 228 Th isotope dilution spike and alpha spectrometry (Rubin, 1991). The errors reported in Table 1 are the 2σ counting variance. To examine the possibility of adsorption of radium and thorium on barite surfaces from the bulk sediment during the separation procedure, ²²⁸Ra and ²²⁹Th spikes were added to each step of the barite separation treatment of selected samples. About 1% of the Th and 0.5% of the radium spikes were adsorbed onto the cleaned barite surfaces. The activity of the adsorbed fraction of radium is insignificant relative to the total radium activity in barite crystals younger than 8,000 years, in the cores analyzed in this work. Therefore, corrections for these adsorbed activities were not made; they do not significantly change the results obtained in this work. # 3. RESULTS AND DISCUSSION # 3.1. ²²⁶Ra Activity in Marine Barite and Associated Sediments The ²²⁶Ra and ²³⁰Th activities of barite samples, the depth of the sediment from which they were extracted, and the ¹⁴C ages of these sediments are given in Table 1a and b. The uranium concentrations in the samples were less than 0.5 ppm, negligible in comparison to thorium, indicating that essentially all the ²³⁰Th in the barite crystals is unsupported. ^{**} None of the barite samples in Table 1 (b) have any excess ²²⁶Ra activity. ^{***} nd = not detected. ^{****} Ages for PC72 were determined using oxygen isotope age model (Murray et al., 1995) and for the ODP sites using biochronology (Barron et al., 1985). ^{***** &}lt;sup>230</sup>Th activities of the bulk sediment were measured and provided by R. Anderson at Lamont-Doherty Earth Observatory. ²³⁰Th/²³²Th AR ranged between 20 and 190, with a mean of about 100, which is consistent with the ratio in the bulk sediments in this area (R. F. Anderson, pers. commun.). Considering the high counting error associated with the very low ²³²Th activities and small sample size the range of values is probably experimental. The ²²⁶Ra activities versus depth of marine barite from the two equatorial Pacific cores are shown in Fig. 1. Bulk sediment ²²⁶Ra activities were also measured and compared with bulk sediment 230 Thexs and ²¹⁰Pb_{exs} activities (Table 1c; Fig. 2). The ²²⁶Ra activity of barite is considerably higher than that of the bulk sediment (Fig. 1). Since barite comprises 0.25 wt% of these sediments, it accounts for up to 20% of the bulk sediment ²²⁶Ra activity. The exponential decrease of ²²⁶Ra in barite with depth in the upper 25 cm of the cores suggests that barite behaves as a closed system with respect to radium and is not affected by exchange or recrystallization (Fig. 1). It is unlikely that such a curve would be produced by precipitation of barite or exchange of barium and radium in the barite # 226Ra activity (dpm/gm) Fig. 1. 226 Ra activity in marine barite separated from (a) core MC69, 0.67°N 139.43°W and (b) core MC82, 2.03°N 140.08°W. # Activity of 236 These, 226 Ra, and 216 Pbess (dpm/gm) Fig. 2. Bulk sediment $^{226}\text{Ra},\,^{210}\text{Pb}_{exs}$ and $^{230}\text{Th}_{exs}$ activities: (a) core MC69, 0.67°N 139.43°W and (b) core MC82, 2.03°N 140.08°W. $^{230}\text{Th}_{exs}$ activities were measured and provided by R. Anderson at Lamont-Doherty Earth Observatory. crystals with the porewater because the porewater barium concentrations in these cores remain relatively constant below a few centimeters depth (Paytan and Kastner, 1996). Lack of any detectable ²²⁸Th, ²²⁸Ra, and ²²⁴Ra activities in any of the barite samples analyzed also suggest that no or insignificant barite growth is occurring in the sediment below the bioturbated zone. This conclusion is supported by the similar morphology of the crystals to those observed in the water column (Bishop, 1988; Dehairs et al., 1980) and the strontium isotope composition of previously analyzed barite samples (Paytan et al., 1993). The absence of any excess ²²⁶Ra activity in barite from sediments older than ~8,000 years further reinforces this conclusion (PC72 and ODP samples, Table 1b). 222 Rn (decay product of 226 Ra) emanation from the barite crystals was also measured in order to verify the closed-system behavior. The emanation coefficient (radon emerging from mineral grains/radon generated in the mineral by decay of radium) was found to be 5%. This is equal to the emanation due to recoil of radon from a thin surficial layer of radium in grains which are $\sim 1~\mu m$ in size (Rama and Moore, 1990), and indicates no 222 Rn escape from the barite crystals, as expected from a closed-system behavior. The ²²⁶Ra/Ba ratio in barite separated from sediments in the mixed layer is about 0.3 dpm/ μ mol. This ratio is lower than the ²²⁶Ra/Ba ratio of about 1.2 dpm/µmol of particulate matter recovered from sediment traps in this area (Moore and Dymond, 1991). Assuming most of the barium and radium in the particulate matter resides in barite (Moore and Dymond, 1991), the lower ratio in the crystals is consistent with the decay of ²²⁶Ra during the residence time of the sediment in the mixed-layer, which is ~ 3.000 years based on ¹⁴C data by DeMaster and Pope (1994). These data suggest that barite is forming in the water column. But, assuming that the concentration in the upper centimeters of the porewater radium is equal to that of the bottom water, the ²²⁶Ra/ Ba ratio of porewaters from the upper 0.5 cm of the sediment in this area would be 0.9 dpm/ μ mol (Paytan, 1995) (which is clearly a minimum value); thus, an early-diagenetic barite formation, close to the sediment water interface where porewaters are supersaturated with respect to barite, cannot be ruled out. In either case the ²²⁶Ra activity data indicate that barite once formed (in the water column and/or at the sediment water interface) remains a closed system with respect to radium. Hence, marine barite is a suitable phase for geochemical paleoceanographic studies and the decay of ²²⁶Ra in these barite samples can be used for geochronology. These results for radium and thorium in marine barite differ significantly from those of Church and Bernat (1972) and Borole and Somayajulu (1977) discussed above. We suspect that the milder sequential leaching procedure they used did not remove all detrital material and oxyhydroxide coatings from the barite; the X-ray analysis they used to confirm the sample purity is only semiquantitative. These impurities probably had a 230Th/232Th AR close to 1 and ²²⁸Th, which would have lowered the apparent ²³⁰Th/²³²Th AR and produced an apparent high ²²⁸Th/²³²Th AR in the barite relative to the bulk sediment. The reported new data are from samples with considerably higher barite/detritus ratios, and a more extreme HF leach step was used to ensure the removal of detrital components. In addition, special precautions were taken to thoroughly leach the marine barite crystals surface coatings of Fe-Mn oxyhydroxides, which are known to adsorb radium and thorium, as described in Paytan (1995). # 3.2. Sedimentation Rates Determined Using ²²⁶Ra in Barite Sedimentation rates of 3.6 cm/kyr at the equator and 2.7 cm/kyr at 2°N are derived from the slope of the logarithm of ²²⁶Ra (dpm/gm) in barite versus depth below the bioturbation zone (Fig. 3, empty symbols). These are maximum sedimentation rates because most likely a larger fraction of the measured radium in the older samples is produced by ²³⁰Th in the barite (supported ²²⁶Ra). It is unclear where the thorium resides in the barite crystals but it is most likely adsorbed onto the crystal surfaces from the surrounding porewater; the similar ²³⁰Th/²³²Th activity ratios determined in the bulk sediment support this conclusion. For comparison, the unsupported ²²⁶Ra (²²⁶Ra_{exs}) in the barite crystals was also calculated (Table 1a). This calculation assumes that all the barite is authigenic and that the ²²⁶Ra in barite is incorporated Fig. 3. Sedimentation rates in two equatorial Pacific cores. *S = Sedimentation rate, determined by dividing the decay constant (λ) of ²²⁶Ra by the slope of ²²⁶Ra activity change with depth (empty circles) and ²²⁶Ra_{exs} activity change with depth (full circles). (a) Core MC69, 0.67°N 139.43°W and (b) Core MC82, 2.03°N 140.08°W. from the water column or at the sediment-water interface, while the thorium is adsorbed onto the barite surfaces from the porewater. With time ²³⁰Th generates supported ²²⁶Ra as the initial excess ²²⁶Ra decays. The unsupported ²²⁶Ra_{exs} is then given by ²²⁶Ra_{total} – ²²⁶Ra_{sup.} = ²²⁶Ra_{exs}. Thus, the excess ²²⁶Ra ($N_0^9 e^{-\lambda_2 t}$) was calculated using the following equation: $$N_2 - \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 (e^{-\lambda_1 t} - e^{-\lambda_2 t}) = N_2^0 e^{-\lambda_2 t}$$ in which the subscript 1 refers to the parent ²³⁰Th and the subscript 2 refers to the daughter ²²⁶Ra; N stands for the total number of atoms of the isotope measured (dpm/λ) ; λ is the decay constant of the isotope, t is the age of the sample, and N^0 is the initial number of atoms of the corresponding isotope, at zero age. ²²⁶Ra has a half-life of 1600 years and ²³⁰Th has a half-life of 75,200 years. The initial ²³⁰Th activity is calculated from the measured ²³⁰Th activity of each sample and the age of the sample using: $N_1^0 = \frac{N_1}{e^{-\lambda_1 t}}$. The ²³⁰Th- produced ²²⁶Ra was calculated from the ¹⁴C age of the sample (DeMaster and Pope, 1994). This method of calculating the excess ²²⁶Ra assumes that the ingrown radium is not lost to porewaters through alpha recoil and/or during the leaching. Also, because postdepositional thorium adsorption is a continuos process and the chemical treatment preferentially removes radium and does not completely remove thorium from surfaces, as indicated by the apparent Ra deficiency in the older samples (Table 1b), this method over-corrects for Thsupported radium and the $^{226}Ra_{exs}$ activities are minimum values. The calculated $^{226}Ra_{exs}$ in the barite crystals are given in Table 1a, and the calculated sedimentation rates derived from the logarithm of ²²⁶Ra_{exs} (dpm/gm) in barite versus depth below the bioturbation zone (Fig. 3, full symbols) are 3.0 cm/kyr at the equator and 2.4 cm/kyr at 2°N. The sedimentation rates calculated with or without correction for supported radium are similar and only slightly higher than ¹⁴C based estimates (2.3 and 2.1 cm/kyr, respectively, De-Master and Pope, 1994), and of the same order as δ^{18} O derived sedimentation rates (\sim 3.2 cm/kyr, Murray et al., 1995). Such sedimentation rates are quite typical for the equatorial Pacific Ocean and are much higher than those calculated from the slope of the logarithm of excess ²³⁰Th in bulk sediment versus depth (0.26 and 0.23 cm/kyr, respectively), suggesting that ²³⁰Th accumulation in these sediments is not constant with time and might be influenced by other processes such as carbonate dissolution (Marcantonio et al., 1995). Sediments in the mixed layer are deficient in 226 Ra relative to 230 Th due to thorium scavenging from the water column and radium loss from the bioturbated zone, and the deficiency decreases with depth. Trap samples from 1°N, 139°W (MANOP site C) have a bulk 226 Ra/ 230 Th activity ratio of >1 (W. S. Moore, unpubl. data). The 226 Ra/ 230 Th activity ratio in the sediment mixed layer is 0.6, in agreement with radium loss to the water column. The bioturbation coefficients $(D_{\rm b})$, representing the intensity of sediment mixing, were calculated using the bulk sediment 210 Pb $_{\rm exs}$ data in the mixed layer and the relation $D_{\rm b} = \lambda z^2/[\ln(C_0/C_z)]^2$, where C_0 and C_z are the excess 210 Pb activities at depths of 0 and z cm, and λ is the ²¹⁰Pb decay constant as described in Smith et al. (1993). Results yield coefficients of 0.1 cm²/yr for the equator and 0.06 cm²/yr at 2°N. Employing an equation that relates the ²¹⁰Pb_{exs} profile, bioturbation coefficient, and the sedimentation rate in a core (DeMaster and Cochran, 1982), a good fit to the data in the equator core was obtained using a sedimentation rate of 3 cm kyr⁻¹, which is consistent with the sedimentation rate calculated using ²²⁶Ra decay in barite. ### 4. CONCLUSIONS Marine barite in oxic pelagic sediments behaves as a closed system with respect to radium and thus is a suitable authigenic marine phase for chemical paleoceanographic studies. In Holocene sediments < 8000 years old the decay of excess ²²⁶Ra in barite provides reliable sedimentation rates, and therefore can be utilized for dating carbonate poor sediments. Acknowledgments—We thank D. J. DeMaster and R. F. Anderson for sharing their data with us D. J. Macdougall for guidance with the alpha spectrometry and A. Spivack for invaluable discussions. The authors are grateful for critical reviews of the manuscript by Drs. R. Ku, T. Church, R. F. Anderson, and an anonymous reviewer. This work was supported by the US National Science Foundation (OCE-9116010). Editorial handling: G. Favre ### REFERENCES Barron J. A. et al. (1985) Synthesis of biostratigraphy, Central Equatorial Pacific, Deep Sea Drilling Project Leg 85; Refinement of Oligocene to Quaternary biochronology. In *Initial Rpts. Deep Sea Drilling Proj.* (ed. L. A. Mayer and F. Theyer), Vol. 85, 905–938. Bishop J. K. B. (1988) The barite-opal-organic carbon association in oceanic particulate matter. *Nature* **331**, 341–343. Borole D. V. and Somayajulu B. L. K. (1977) Radium and lead-210 in marine barite. *Mar. Chem.* **5**, 291–296. Church T. M. and Bernat M. (1972) Thorium and Uranium in marine barite. Earth Planet. Sci. Lett. 14, 139-144. Cochran J. K. (1979) The geochemistry of ²²⁶Ra and ²²⁸Ra in marine deposits. Ph.D Dissertation, Yale Univ. Dehairs F., Chesselet R., and Jedwab J. (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. *Earth Planet. Sci. Lett.* **49**, 529–550. Dehairs F., Goeyens L., Stroobants N., Bernard P., Goyet C., Poisson A., and Chesselet R. (1990) On the suspended barite and the oxygen minimum in the Southern Ocean. *Global Biogeochem. Cycles* **4**, 85–102. Dehairs F., Stroobants N., and Goeyens L. (1991) Suspended barite as a tracer of biological activity in the Southern Ocean. *Mar. Chem.* **335**, 399–410. DeMaster D. J. and Cochran K. J. (1982) Particle mixing rate in deep-sea sediments determined from excess ²¹⁰Pb and ³²Si profiles. *Earth Planet. Sci. Lett.* **61**, 257–271. DeMaster D. J. and Pope R. H. (1994) C-14 chronologies, biogenic accumulation rates and sediment mixing coefficients along the equatorial Pacific JGOFS transect. The Oceanographic Society, 4th annual meeting (abstract). Dymond J., Suess E., and Lyle M. (1992) Barium in deep sea sediments: A geochemical proxy for paleoproductivity. *Paleoceanogr.* 7, 163–181. Ivanovich M. and Harmon R. S. (1992) Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Kadko D. (1980) ²³⁰Th, ²²⁶Ra and ²²²Rn in abyssal sediments. Earth Planet. Sci. Lett. 49, 360–380. - Koide M., Bruland K., and Goldberg E. D. (1976) ²²⁶Ra chronology of a coastal marine sediment. *Earth Planet. Sci. Lett.* **31**, 31–36. - Lal D. and Somayajulu B. L. K. (1975) On the importance of studying magnetic susceptibility stratigraphy and geochronology of lake Biwa sediments. In *Paleolimnology and the Japanese Pleistocen* (ed. S. Hiro), pp. 530–535. Kyoto Univ. - Marcantonio F., Kumar N., Stute M., Anderson R. F., Seidl M. A., Schlosser P., and Mix A. (1995) A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. *Earth Planet. Sci. Lett.* **133**, 549–555. - Moore W. S. (1984) Radium isotope measurements using germanium detectors. Nucl. Instrum. Methods (Phys. Res. Sect.) 223, 407-411. - Moore W. S. and Dymond J. (1991) Fluxes of radium-226 and barium in the Pacific Ocean: The importance of boundary processes. *Earth Planet. Sci. Lett.* **107**, 55-68. - Murray R. W., Leinen M., Murray D. W., Mix A. C., and Knowlton C. W. (1995) Terrigenous Fe input and biogenic sedimentation in the glacial and interglacial equatorial Pacific. *Global Biogeochem. Cycles* 9, 667-684. - Paytan A. (1995) Marine barite, a recorder of oceanic chemistry, productivity, and circulation. Ph.D. Thesis, Scripps Institution of Oceanography. - Paytan A. and Kastner M. (1996) Benthic Ba fluxes in the central equatorial Pacific; Implications for the oceanic Ba cycle. Earth Planet. Sci. Lett. 142, 439-450. - Paytan A., Kastner M., Martin E. E., Macdougall J. D., and Herbert T. (1993) Marine barite as a monitor of seawater strontium isotope composition. *Nature* 366, 445-449. - Piggot C. S. and Urry W. D. (1941) Radioactivity of ocean sediments. Amer. J. Sci. 239, 81-91. - Rama S. P. and Moore W. S. (1990) Micro-crystallinity in radioactive minerals. *Nucl. Geophys.* **4**, 475–478. - Rubin K. H. (1991) Timing, extent and sources of marine volcanism through U-series disequilibrium. Ph.D., Univ. California San Diego. - Schmitz B. (1987) Barium, Equatorial high productivity, and the wondering of the Indian continent. *Paleoceanogr.* 2, 63-77. - Schimmield G. B., Price N. B., and Kahn A. A. (1988) The use of Th-230 and Ba as indicators of paleoproductivity over a 300 Kyr time scale—Evidence from the Arabian Sea. *Chem. Geol.* 70, 112. - Smith R. C., Pope R. H., DeMaster D. J., and Magaard L. (1993) Age-dependent mixing of deep-sea sediments. Geochim. Cosmochim. Acta 57, 1473-1488.