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paleochemistry is paramount to understanding global biogeochemical
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of these cycles to changes in climate and tectonics.
Paleo-reconstruction involves the application of various tracers that
record seawater compositions, which in turn may be used to infer
oceanic processes. Several important tracers are incorporated into
pelagic barite, an authigenic mineral that forms in the water column.
Here we summarize the utility of pelagic barite for the reconstruction of
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1 Pelagic Barite Accumulation Rates: A Proxy
for Export Production

Barite (BaSO4) precipitates in the ocean at several settings where supersaturation

with respect to barite is achieved. These conditions occur in microenvironments

in the oceanic water column (pelagic barite), at volcanic hydrothermal settings

(hydrothermal barite) or cold seeps (cold-seep barite), or in porewaters beneath

the sediment–water interface (diagenetic barite). Pelagic barite crystals that are

found in the water column or marine sediments are elliptical or euhedral, ranging

in size from 1 to 5 μm (Figure 1). Pelagic barite can be found throughout the

oceanic water column associated with sinking particulate matter and in marine

sediments underlying areas of high biological productivity (Dehairs et al., 1980,

1991, 2000; Bishop, 1988; Dymond et al., 1992; Francois et al., 1995; Dymond

and Collier, 1996; Paytan et al., 1996a; Paytan and Griffith, 2007). Precipitation

of barite especially at water depth of 200–1500 meters and its preservation

throughout the water column and in marine sediments has been a long-standing

paradox, owing to the undersaturation of the world ocean with respect to barite

(Monnin et al., 1999; Rushdi et al., 2000; Monnin and Cividini, 2006). Barite

formation in undersaturated seawater and thus requires some biological or abiotic

mechanism to create supersaturated microenvironments in which barite can

precipitate. Although some marine organisms can form barite within their cells

(Gooday and Nott, 1982; Finlay et al., 1983), their occurrence appears too sparse

to account for the ubiquitous presence of barite in seawater. Similarly, the

presence of Acantharea – organisms containing considerable quantities of Ba

that precipitate SrSO4 (celestite) (e.g., Bernstein and Byrne, 2004) – is not

necessary for driving significant Ba removal from seawater (Esser and Volpe,

2002) or for barite precipitation (Ganeshram et al., 2003). Instead, barite micro-

crystals are thought to precipitate directly from seawater, in close association with

heterotrophic oxidation of organic matter (Chow and Goldberg, 1960). Indeed,

the abundance of particulate Ba and presumably barite is found to peak in the

upper mesopelagic zone, where maximum regeneration of organic matter occurs

(e.g., Sternberg et al., 2008). Living phytoplankton contain a relatively large

amount of labile Ba, which is released rapidly on remineralization and may

provide the main source of Ba for barite precipitation in the microenvironments.

The process is possibly mediated by marine bacteria that produce extracellular

polymeric substances that bindBa and serve as crystal nucleation sites (González-

Muñoz et al., 2012; Martinez-Ruiz et al., 2018). The particulate pelagic barite

export flux is thus related to the integrated C export below the euphotic zone (i.e.,

export production – the amount of organic matter produced in the ocean by

primary production that is not recycled [remineralized] before it sinks into the

1Pelagic Barite
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aphotic zone) and is not necessarily associated with specific organisms (e.g.,

Jaquet et al., 2007).

Assuming the mechanisms of pelagic barite formation and preservation in the

marine environment at present have also operated in the past, quantitative rela-

tions between excess Ba (Baex, Ba that is not of terrigenous origin; Dymond et al.,

1992; Averyt and Paytan 2004) or pelagic barite (BaAR) accumulation in marine

sediments (Paytan et al., 1996a) can be used to reconstruct export production

(Figure 2). Indeed, owing to the relatively high preservation of barite in non-

sulfate-reducing sediments (Paytan and Kastner, 1996) and the general non-

species-specific relation to export production, Baex or BaAR has been widely

used to reconstruct ocean export production over different geological time scales

(Schmitz, 1987; Rutsch et al., 1995; Paytan et al., 1996a; Dean et al., 1997;

Nürnberg et al., 1997; Bonn et al., 1998; Bains et al., 2000; González-Muñoz

et al., 2003; Averyt and Paytan, 2004; Jaccard et al., 2005; Olivarez Lyle and Lyle,

2006; Griffith et al., 2010; Erhardt et al., 2013;Ma et al., 2014, 2015; Carter et al.,

2016). When using BaAR to quantitatively reconstruct export production, care

must be taken to use accumulation rates and not the abundance of the mineral

because of the impact of dilution by other sedimentary phases. Moreover, the

pelagic nature (i.e., formation in the water column in association with sinking

particulate matter, as opposed to other formation mechanisms; see Section 2) of

the barite crystals must be confirmed using microscopy or isotopic analyses

(Paytan et al., 2002; Griffith et al., 2018).

2 Nonpelagic Marine Barite

For reconstructing ocean export production, nonpelagic marine barite (i.e.,

hydrothermal, cold-seep, and diagenetic barite) deposits should be avoided, as

they do not represent water column processes. Such samples can be generally

Figure 1 Pelagic barite crystals from sediment core Leg 199, Site 1221C, Core

11–3, 66–70 cm depth. Sample separated following the sequential leaching

process of Eagle et al. (2003).

2 Geochemical Tracers in Earth System Science
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averted with careful site selection to avoid (1) sites that are close to hydro-

thermal and cold seeps settings and (2) areas with extensive sulfate reduction

(based on sulfate concentrations in porewaters), since pelagic barite in these

sediments could be dissolved under sulfate-reducing conditions that deplete

sulfate in porewater fluids and lower the barite saturation state. The released

Ba can then diffuse upward and subsequently reprecipitate as diagenetic

barite on encountering residual sulfate that is isotopically enriched.

Because the process of precipitation of these barite deposits differs from

that occurring in the upper water column, the crystal size and habit of these

barite crystals and their chemical and isotopic composition differ from those

of the pelagic barite crystals that form in the water column in association

with organic matter regeneration (Paytan et al., 2002; Griffith et al., 2018).

Accordingly, barite samples should be screened visually (with a scanning

electron microscope) and/or chemically to verify their water column pelagic

origin.

3 Sulfur Isotopes

Pelagic barite incorporates sulfate into the crystal structure with little fraction-

ation of sulfur isotopes (<0.4‰; Paytan et al., 1998). The sulfur isotopic ratio

(δ34S) of core-top pelagic barite is consistent with the seawater sulfate

δ34S value of 21‰ in the present-day open ocean (Rees et al., 1978; Paytan

et al., 1998; Markovic et al., 2015). Owing to the low solubility of barite at
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Figure 2 (a) Relation between excess Ba and organic carbon export in sediment

traps (modified from Dymond et al., 1992). (b) Relation between barite Ba

(BaBARITE) accumulation rate in core-top sediments and carbon export in the

overlying water column (modified from Eagle et al., 2003). Note the outlier in,

which is one sample from the highly productive coastal Peru Margin, was not

included in the regression andmay not be representative of the Holocene period.
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marine temperature and pH conditions, barite is stable during diagenesis as long

as the interstitial water is saturated with respect to barite and microbial sulfate

reduction (MSR) is limited: 2CH2O + SO4
2− → 2HCO3

− + H2S (Paytan et al.,

1993; Paytan et al., 2002). Accordingly, pelagic barite records the δ34S value of

seawater sulfate at the time of its formation and can be used to reconstruct

changes in seawater sulfate δ34S over time (Paytan et al., 1998, 2004).

Owing to the long residence time (>10 million years) of sulfate in the ocean

relative to the mixing time of seawater in the ocean (~1000 years) through

much of Earth history, the δ34S value of seawater sulfate is homogeneous

throughout the global ocean (Rees et al., 1978; Claypool et al., 1980;

Jørgensen and Kasten, 2006). The δ34S value of seawater sulfate is controlled

by a balance between S inputs via terrestrial weathering and volcanic degas-

sing and S outputs via burial of sulfur-bearing minerals (e.g., pyrite, gypsum)

and their respective isotopic compositions. The process of MSR preferentially

incorporates 32S in the sulfide produced, a fraction of which reacts with

reactive iron and precipitates as pyrite. As a result of the large isotopic

fractionation associated with MSR, pyrite sulfur is isotopically light relative

to seawater sulfate. Thus, precipitation of sedimentary pyrite often exerts

dominant control on seawater sulfate δ34S values because the residual sulfate

becomes enriched in 34S as more pyrite is buried. By contrast, sulfate-bearing

minerals (e.g., gypsum, anhydrite) precipitation involves little or no fraction-

ation relative to coeval seawater. The δ34S value of weathered evaporites thus

varies spatially as a function of the geological age of the weathered terrain.

Sulfate sourced from volcanism and hydrothermal activity is also important;

these sources typically have a δ34S value of approximately 0‰ (relative to

Vienna Canyon Diablo Troilite [VCDT]; Sakai et al., 1982). Consequently,

fluctuations in the δ34S value of seawater sulfate through time (Figure 3) can

shed light on potential changes in geological, geochemical, and biological

processes that affect the sources and sinks of S to/from the ocean and their

isotopic values (e.g., Paytan et al., 1998, 2004; Wortmann and Paytan, 2012;

Markovic et al., 2015; Yao et al., 2018).

The advantage of using pelagic barite to reconstruct paleoseawater sulfate

δ34S signatures is an improved temporal resolution and reduced uncertainty

associated with precipitation in marginal environments and potential diagen-

etic alteration of reconstructions using evaporite deposits that have intermit-

tent occurrence and poor age control (Claypool et al., 1980; Strauss, 1997).

Paytan et al. (1998, 2004) presented a continuous pelagic barite δ34S curve

for the past 130 million years at a temporal resolution of less than 1 million

years. The barite record has a relatively narrow range of oceanic sulfate

δ34S values for each age (<0.5‰). During times of rapid perturbations (e.g.,

4 Geochemical Tracers in Earth System Science
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the Paleocene–Eocene Thermal Maximum, Eocene, Holocene), higher tem-

poral resolution records (a few thousand years) provide precise information of

the magnitude, duration, and gradient of the δ34S excursions, permitting the

use δ34S for stratigraphic correlations (e.g., Markovic et al., 2015; Yao et al.,

2018).

Barite that precipitates from other sources of sulfate (i.e., hydrothermal or

porewater fluids) may have different S-isotope signatures than those of sea-

water sulfate. Diagenetic barite precipitates from porewater fluids where

sulfate is depleted by MSR, leaving residual sulfate highly enriched

δ34S values (up to 84‰; Torres et al., 1996; Paytan et al., 2002); barite that

precipitates in these porewaters hence assumes these enriched isotopic values.

In anaerobic sediments of cold-seep environments, sulfate is also the electron

acceptor driving anaerobic oxidation of methane (AOM): CH4 + SO4
2- →

HCO3
- + HS- + H2O (Jørgensen and Kasten, 2006). Cold-seep barite

δ34S values represent a mixture of seawater and isotopically enriched porewa-

ter sulfate that has undergone AOM (Greinert et al., 2002; Paytan et al., 2002).

Hydrothermal barite that forms in association with volcanic hydrothermal

activity can be isotopically depleted relative to coeval seawater sulfate

δ34S because of the incorporation of various amounts of S from hydrothermal

fluids (Paytan et al., 2002).

Figure 3 Seawater sulfate S isotopic curve based on pelagic barite for the last

130 million years. Error bars are 1σ. Data sources: Paytan et al. (1998);

Markovic et al. (2015, 2016); Masterson et al. (2016); Yao et al.

(2018, 2020).
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4 Oxygen Isotopes

The oxygen isotopic ratio (δ18O) of oceanic sulfate is also affected by processes

and transformation within the global S cycle. The δ18O composition of seawater

sulfate is set by the δ18O values of sulfate inputs and outputs to/from the ocean

as modified bymicrobial recycling of sulfate within the ocean throughMSR and

sulfide reoxidation near the seawater–sediment interface. Microbial sulfate

reduction alters sulfate δ18O values via kinetic and equilibrium exchange reac-

tions (Fritz et al., 1989). The majority (80% to 95%) of the sulfide produced by

MSR is subsequently reoxidized back to sulfate when exposed to more oxic

conditions within marine sediments (Jørgensen, 1982). Depending primarily on

organic matter availability and microbial activity, different pathways of sulfide

reoxidation can impart sulfate δ18O enrichment of up to 21‰ over ambient

water δ18O (Van Stempvoort and Krouse, 1994; Balci et al., 2012; Böttcher

et al., 2005). These changes do not affect δ34S values, and the produced sulfate

retains the S-isotope composition of the sulfide that was oxidized. Because of

the rapid O-isotope exchange during microbial sulfur cycling, the residence

time of sulfate-bound oxygen is on the order of 1 million years (Jørgensen and

Kasten, 2006; Markovic et al., 2016).

Pelagic barite has been used as an archive for the reconstruction of the

δ18O composition of oceanic sulfate (Turchyn and Schrag, 2004, 2006;

Markovic et al., 2016). The δ18O value of core-top pelagic barite is about

1.4‰ to 2.5‰ depleted relative to the present-day seawater sulfate

δ18O value of 8.6‰ Vienna Standard Mean Ocean Water (VSMOW). This

isotopic offset is likely a result of a kinetic effect associated with barite

precipitation (Turchyn and Schrag., 2004) and/or organic sulfur oxidation

during barite precipitation (Markovic et al., 2016). While the underlying factors

controlling this isotopic offset require further investigation, if we assume that

the offset is constant through time, it is possible to use barite δ18O to shed light

on fluctuation in the δ18O values of seawater sulfate and the processes that

control these values. Turchyn and Schrag (2004, 2006) reported oceanic sulfate

δ18O data derived from pelagic barite over the Cenozoic (Figure 4) and showed

distinct trends in the temporal evolution of sulfate δ18O and δ34S values. It has

been suggested that the temporal variation in oceanic sulfate δ18O is linked to

changes in the aerial distribution of continental shelves with organic-rich

sediments, which in turn corresponds to sea-level variations (Turchyn and

Schrag, 2006; Markovic et al., 2016).

Oxygen–isotope exchange between sulfate and seawater is strongly depend-

ent on the temperature and pH of the solution (Chiba and Sakai, 1985). In the

present-day ocean, the oxygen–isotope exchange rate is very slow and does not

6 Geochemical Tracers in Earth System Science
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approach equilibrium within the estimated residence time of sulfate in the ocean

(Chiba and Sakai, 1985). Thus, seawater sulfate δ18O is out of isotopic equilib-

rium with oceanic water (0‰ VSMOW; Van Stempvoort and Krouse, 1994),

and this is also reflected in pelagic barite. By contrast, hydrothermal barite

forms under high temperatures (e.g., >120°C) and near-neutral pH conditions,

recording sulfate δ18O that is in equilibrium with ambient hydrothermal fluid

δ18O (Chiba and Sakai, 1985; Alt et al., 2010). For example, the δ18O value of

hydrothermal barite from Juan de Fuca Ridge black smoker varies between 3‰

and 16‰ (Goodfellow et al., 1993). Higher values (e.g., 20.6‰) were reported

for ancient hydrothermal barite deposits, although these samples may have been

affected by postdepositional alteration or metamorphism (e.g., Moles et al.,

2014). The O-isotope fractionation factor of the sulfate–water system can also

be used as a geothermometer to estimate the temperature of geothermal reser-

voirs (Chiba and Sakai, 1985).

Cold-seep barite and diagenetic barite are usually isotopically enriched in
18O resulting from O-isotope fractionation during sulfate reduction, a process

that preferentially reduces sulfate with depleted O-isotope values leaving any

residual sulfate isotopically enriched (Torres et al., 1996; Greinert et al., 2002).

Although the parameters controlling O-isotope fractionation between sulfate

and water are not fully known, it is now understood that the kinetic fractionation

associated withMSR for oxygen isotopes is up to 25% of that for sulfur isotopes

Figure 4 Pelagic barite O isotopic curve for the Cenozoic. Error bars are 1σ.

Data sources: Turchyn and Schrag (2004, 2006).
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and depends on the cell-specific sulfate reduction rate (Aharon and Fu, 2000),

while O-isotope exchange reactions drive the residual sulfate δ18O toward an

equilibrium value of ~29‰more elevated than the ambient water δ18O at ~5°C

(Fritz et al., 1989). Investigation of combined δ18O and δ34S signatures recorded

in barite can be used to identify the environment where barite precipitates and

forms (Griffith and Paytan, 2012; Griffith et al., 2018) (Figure 5).

5 Strontium Isotopes

Because of the similarity between the alkali earth metals strontium (Sr2+) and

barium (Ba2+), Sr2+ can substitute for Ba2+ in barite at concentrations >10,000

ppm (i.e., >1%, or >10,000 μg Sr per g barite; Averyt and Paytan, 2003).

Rubidium (Rb+) content is low in barite, eliminating any need for correcting

for in situ production of radiogenic 87Sr from the decay of 87Rb. Thus, pelagic

barite serves as a reliable archive of the contemporaneous radiogenic Sr isotopic

composition of seawater (87Sr/86Sr) (Goldberg et al., 1969; Paytan et al., 1993).
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Figure 5 Sulfur and oxygen isotopes of barite formed in different environments.

Black dashed lines denote the values of modern seawater sulfate. The black

circle is modern pelagic barite; open diamonds are hydrothermal barite; and

gray triangles are diagenetic and cold-seep barite. Figure after Griffith et al.

(2018) using data sources: Aquilina et al. (1997); Greinert et al. (2002); Paytan

et al. (2002); Kim et al. (2004); Feng and Roberts (2011); Eickmann et al.

(2014); Stevens et al. (2015); Markovic et al. (2016); Griffith et al. (2018).
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Owing to the long residence time of Sr in seawater (~2.5 million years;

Hodell et al., 1990) compared to the mixing time of the ocean, the Sr isotopic

composition of seawater is uniform throughout the ocean. Changes in the

seawater 87Sr/86Sr in the past recorded in pelagic barite or other archives

(e.g., carbonate, apatite) are thought to reflect changes in weathering and

hydrothermal activity, related to changes in climate and tectonics (e.g., Burke

et al., 1982; Palmer and Edmond, 1989; Hodell et al., 1990; McArthur et al.,

2012). The seawater radiogenic Sr-isotope curve also serves to aid in strati-

graphic correlation and dating, and its record in barite is particularly useful for

dating carbonate-poor or diagenetically altered sedimentary sections where

sulfate reduction is not dominating the system (Mearon et al., 2003).

Pelagic barite also serves as an archive of the stable (nonradiogenic) Sr

isotopic composition (δ88/86Sr) of seawater (Griffith et al., 2018). However,

pelagic barite δ88/86Sr values are depleted relative to dissolved Sr in seawater,

likely because of both equilibrium and chemical kinetic effects during crystal

growth (Widanagamage et al., 2014). Unlike other types of barite (e.g., hydro-

thermal., continental), pelagic barite has a consistent offset of −0.53‰ from the

seawater δ88/86Sr value as determined by measurements of core-top samples

(Griffith et al., 2018). Assuming that this offset is constant through time and

independent of environmental conditions, the seawater δ88/86Sr can be recon-

structed using pelagic barite (Paytan et al., 2017). Marine carbonate is the major

sink for Sr, which undergoes mass-dependent isotopic fractionation during

carbonate precipitation (Krabbenhöft et al., 2010). Consequently, stable Sr

isotopes have been suggested as a proxy for reconstructing carbonate deposition

in the ocean through time (Krabbenhöft et al., 2010; Vollstaedt et al., 2014;

Pearce et al., 2015). By combining records of seawater δ88/86Sr and 87Sr/86Sr, it

should be possible to simultaneously reconstruct changes in continental

weathering and global carbonate burial (e.g., Vollstaedt et al., 2014; Pearce

et al., 2015).

6 Calcium Isotopes

Calcium (Ca2+) is an alkali earth metal that can substitute for Ba2+ in barite

similarly to Sr2+, however, to a much smaller degree (~300 ppm or 300 μg Ca

per g barite; Averyt and Paytan, 2003). Calcium has six stable isotopes that

exhibit mass-dependent isotopic fractionation between the dissolved Ca2+ in the

ocean and carbonate (CaCO3) minerals formation and deposition – the major

sink of Ca from the ocean. Therefore, similar to the stable Sr isotopic system

(δ88/86Sr), changes in the Ca isotopic composition of the ocean (δ44/40Ca) could

be used to reconstruct carbonate burial and dissolution – although other changes
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in the marine Ca cycle such as the continental weathering flux, alteration of

oceanic crust, and the hydrothermal flux may also play an important role in

changes in seawater δ44/40Ca (Skulan et al., 1997; De La Rocha and DePaolo,

2000; Fantle and DePaolo, 2005; Heuser et al., 2005; Farkas et al., 2007;

Blättler and Higgins, 2017).

The Ca isotopic composition of pelagic barite from core-top samples shows

a consistent isotopic fractionation from seawater that does not appear to be

dependent on any environmental parameter measured (e.g., temperature, salin-

ity, water column barite saturation; Griffith et al., 2008b). Assuming that this

isotopic fractionation is constant through time, pelagic barite can be used as

a “passive” tracer of seawater δ44/40Ca (i.e., decoupled from the global output

flux of Ca; Fantle, 2010). The use of pelagic barite also eliminates complica-

tions related to biological fractionation associated with biogenic calcium car-

bonate precipitation, which, as stated earlier, serves as the major sink of Ca from

the ocean (Skulan et al., 1997; De La Rocha and DePaolo, 2000; Fantle and

DePaolo, 2005; Heuser et al., 2005; Sime et al., 2005; Hippler et al., 2006;

Farkas et al., 2007). By combining records of pelagic barite and carbonate, both

the seawater δ44/40Ca and the fractionation factor associated with carbonate

sedimentation can be defined through time to gain insight into changes in the

cycling of Ca (and C) in the ocean (Figure 6; Griffith et al., 2008a, 2011; Fantle,

2010; Fantle and Tipper, 2014).

Even a highly stable sulfate mineral such as barite can be susceptible to

postdepositional change because of diagenetic reactions that alter its stable

isotopic composition (e.g., ocean acidification at the Paleocene–Eocene

Thermal Maximum; Griffith et al., 2015). Stable Ca isotopes appear to be

sensitive to these diagenetic processes occurring during extreme climatic or

environmental perturbations, whereas radiogenic Sr ratios are not (Griffith

et al., 2015). Within the upper part of the sedimentary column, radiogenic Sr

in the porewater has been shown to remain dominated by seawater, even where

carbonate is rapidly dissolving (e.g., Fantle, 2015). However, these diagenetic

effects need to be taken into account when interpreting Ca isotope data, and

possibly other geochemical proxies over extreme climatic events that drive

sediment dissolution and alteration. Multiple sites and different sedimentary

phases (e.g., pelagic barite, carbonate, bioapatite) are needed to reconstruct

global changes in seawater chemistry, and in particular Ca isotopes, reliably.

7 Barium Isotopes

With the advancement of multicollector inductively coupled plasma mass

spectrometry (MC-ICP-MS), barium isotopes in diverse Earth materials,
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including barite, have been determined. During barite precipitation the light

Ba isotopes are incorporated preferentially into the barite crystal structure

with fractionation of ~0.5‰ relative to seawater (von Allmen et al., 2010;

Horner et al., 2015). The precipitation of barite in the marine water column

appears to be the primary mediator of Ba isotopic fractionation in the open

ocean (Horner et al., 2015). The effects of this isotopic fractionation cause

a distinct depth profile structure of Ba isotopes in the ocean (Figure 7)

whereby the surface ocean that is depleted in Ba is characterized by enrich-

ment in Ba isotopic compositions (δ138/134BaNIST ~ +0.6‰), whereas deep

waters have higher Ba concentrations and δ138/134BaNIST ~ +0.3‰. Barite in

deep-sea marine environments has a Ba isotopic composition close to δ138/134

BaNIST ~0‰ (Bridgestock et al., 2018). Current research is focused on

understanding the systematics and utility of Ba isotopes in barite specifically

to refine the understanding of past changes in the global Ba cycle, ocean

circulation, and productivity. As the number of laboratories that have the

capability of Ba isotopic analyses increase, we expect that the use of this

relatively new proxy will expand.
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Figure 6 Inferred seawater Ca isotopic curve derived from pelagic barite (open

squares) and deep-sea bulk carbonate (Ca sink; x) relative to modern seawater

with smoothed cubic spline fits of the data (dark lines) with ± 0.18‰ (average

2σmean) in gray following Griffith et al. (2008a). Data sources: Griffith et al.

(2008a); Fantle and DePaolo (2005, 2007).
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8 Future Prospects

Barite accumulation rates in marine sediments and the stable isotopic compos-

itions of the major constituents (S, O, Sr, Ca, and Ba) in pelagic barite have

added valuable insights that have fundamentally enhanced understanding of

ocean productivity and chemistry over a range of timescales. However, the

abundance and isotopic composition of minor constituents in barite have yet to

be systematically explored. For example, pelagic barite may record intermedi-

ate-water-depth radiogenic isotopes (e.g., neodymium) that have shorter resi-

dence times than the global oceanic mixing and can be used as a tracer of

intermediate-water-mass paleocirculation (e.g., Martin et al., 1995). The decay

of radium, thorium, and lead in pelagic barite can be utilized to estimate

sedimentation rates and absolute ages of sediments for the Holocene (e.g.,

Paytan et al., 1996b; van Beek et al., 2001). The ability to analyze additional

tracers in barite will open new insights and opportunities for understanding

present and past biogeochemical cycles and their relation to Earth processes.
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Figure 7Dissolved Ba concentrations and Ba isotopic ratios in seawater. Green

squares and blue open diamonds denote data from the South Atlantic after

Horner et al. (2015) and Bridgestock et al. (2018), respectively.
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